Metric Denotational Semantics for PEPA

نویسنده

  • Marta Kwiatkowska
چکیده

Stochastic process algebras, which combine the features of a process calculus with stochastic analysis, were introduced to enable compositional performance analysis of systems. At the level of syntax, compositionality presents itself in terms of operators, which can be used to build more complex systems from simple components. Denotational semantics is a method for assigning to syntactic objects elements of a suitably chosen semantic domain. This is compositional in style, as operators are represented by certain functions on the domain, and often allows to gain additional insight by considering the properties of those functions. We consider Performance Evaluation Process Algebra (PEPA), a stochastic process algebra introduced by Hillston [9]. Based on the methodology introduced by de Bakker & Zucker, we give denotational semantics to PEPA by means of a complete metric space of suitably enriched trees. We investigate continuity properties of the PEPA operators and show that our semantic domain is fully abstract with respect to strong equivalence.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

$C$-class and $F(psi,varphi)$-contractions on $M$-metric spaces

Partial metric spaces were introduced by Matthews in 1994 as a part of the study of denotational semantics of data flow networks. In 2014 Asadi and {it et al.} [New Extension of $p$-Metric Spaces with Some fixed point Results on $M$-metric paces, J. Ineq. Appl. 2014 (2014): 18] extend the Partial metric spaces to $M$-metric spaces. In this work, we introduce the class of $F(psi,varphi)$-contrac...

متن کامل

Metric Semantics for Second Order Communication

An operational and a denotational semantics are presented for a simple imperative language. The main feature of the language is second order communication: sending and receiving of statements rather than values. The operational semantics is based on a transition system. A complete 1-bounded ultramet-ric space is used in the denotational semantics. In establishing the connection between the two ...

متن کامل

Metric Semantics for True Concurrent Real Time

This paper investigates the use of a complete metric space framework for providing denotational semantics to a real-time process algebra. The study is carried out in a non-interleaving setting and is based on a timed extension of Langerak's bundle event structures, a variant of Winskel's event structures. The distance function of the metric is based on the amount of time to which event structur...

متن کامل

Metric Characterizations of Contextual Logic Programs

The aim of this paper is twofold: to characterize contextual logic programs by means of metric semantics and to argue the usefulness of metric characterizations for formally reasoning about program properties. A new denotational semantics of contextual logic programs is proposed. It is deened compositionally, without any help of any declarative paradigm and of any transition system. Following t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996